$\frac{V}{1} = \frac{1}{2} + \frac{1}$

- a - with a - the provide a state of the st

∴ j 7

Fig. 6 Pitting potential of the steels in 3.5% NaCl solutions

 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{$

Table 4 The repassivation potential for crevice corrosion, $E_{\rm R,crev.}$ (mV vs. SCE)

ا ر	ı • t	=	=
, T.			—!
- -		— .	—

Fig. 7 Pitting potential of the steels in 200 ppm Cl⁻ solutions

Fig.8 The rest potential after 16 hour immersion in solutions with several pH

 $\frac{1}{1} \frac{1}{2} \frac{1}$ $\int_{\mathcal{A}} \int_{\mathcal{A}} \int$

	1 1 ¹ 71 	f m	¶tŗ •	1t := 2%	!γ= ² t ₩ !
4	- T	111	1 ; ¹ =	1	¶ f
		1			